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Boundary conditions for %F will become [3] 

cp (0) = cp’ (0) = # (00) = 0 (4.2) 
By symmetry we have, for 9,. 

rp”(0) = 0 (4.3) 

and at infinity, we adopt one of the following conditions : 

rp(-I-0, w(=)+fP”(4=O (4.4) 

We note that Eqs. (4.1) with the condition (4.2) and the first condition of (4.4). coin- 
cide with the equations of motion for a submerged stream of a Newtonian viscous fluid 

(9 = O).‘If, on the other hand, the conditions (4.2) and (4.3) together with the second 
condition af (4.4) are taken , then the solution of the problem on the submerged stream 

with couple stresses leads to the process of integrating (4.1). 
The author thanks D. D. Ivlev and A. T. Listrov for the formulation of the problem and 

for the guidance during the course of work. 
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The equilibrium figures of a homogeneous right cylinder kept together by surface tension 
forces are considered. As we know, the only equilibrium cylindrical figure in the absence 
of rotation is a right circular cylinder (this shape corresponds to minimal surface energy). 
Such a cylinder remains an equilibrium figure with rotation about the axis of symmetry 
of the normal cross section. However, as will be shown below, new equilibrium figures in 
the form of right cylinders with #II th order (n = 2,3, .,.)-axes of symmetry arise for certain 
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values of the angular velocity. 

1. The rqurtion of the equilibrium figure 8urface. As we know 
[l]. a rotating liquid figure is kept in equilibrium by surface tension forces if the equa- 
tion 

(1.f) 

holds on fts surface. Here p is the density of the liquid, &I is the angular velocity of 
rotation of the liquid mass, PO is the hydrodynamic pressure at the axis of rotation, ~1 
is the external pressure, r is the distance of a point on the surface from the axis of 
rotation, R1 and RI are the principal radii of curvature of the surface, and a is the coef- 

ficient of surface tension. 
In the case of equilibrium cylindrical figures with rectilinear generatrices, surface 

equation (1.1) can be written as 

Here r = r(q) is the equation of the normal cross section of the cylindrical figure in 

polar coordinates ; the primes denote derivatives with respect to 9. 
To Eq. (1.2) we must add the following conditions : 

the condition of incompressibility of the liquid, 
2% 

s 
rs dcp 7 2xRs = const 0.3) 

0 
the condition that the centers of mass of the normal cross sections of the liquid figure 

lie on the axis of rotation, sn '2% 

s 
rScoscpdcp=O, 

s 
r*sincpdtp=O (1.4) 

0 0 
and the condition of single-valuedness, 

r(cp + 2J.r) = +I)) (1.5) 

2, The rolutton of Equotfon (1.2). The bifurcrtlon polntm, The 
solution of Eq. (1.2) which satisfies requirements (1.3) - (1.5) is a right cylinder with a 
circular cross section of radius r = ft. Eq. (1.1) implies directly that this is the only 

possible figure in the absence of rotation (i.e. when P = 0). 
We shall attempt to find other equilibrium figures r = R(1 -f- &), E (( i, deviating 

continuously from the circular cylinder. To this end we expand (1.2) in powers of &, 

limiting ourselves to terms of the order Es , 

t” f (402RS - 1 - D) + &(160’R8 - i- 20) + E= (240’Rs - D) + ~ai60’R” i- 

+Ee2(6&P - 2- a/&) + ~Efa(i20’R3 $- 2) = 0 (2.1) 

We attempt to solve (2.1) by the usua 

4 

119992 

Fig. 1 

1 procedure 121 of the expanding in powers of 
small amplitude of the deviation E , 

E = Eo + El + &a -I- . . . 
D = D, + &il + 61 + . . . (2.2) 

8m’R’ = 80 . aR3 + e, + es -I- . . . 

Substituting (2.2) into (2.1). we obtain equa- 
tions for the successive approximations. In the 
zeroth approximation with allowance for the 
condition (1.3) we obtain 
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&o= 0, 40,‘Rs - i - D, = 0 (2.3) 

The equation for the first approximation is 

Er” + (l/a a1 - 6,) + Er(2D. + 3) = Q 

In this equation (r/s~a - 6,) = 0’ by virtue of (1.3). Single-valuedness condition 
(1.5) implies that (20, + 3)’ must equal the square of the integer. n. This together with 
(2.3) yields Eqs. 

Wl - 61) = 0, (20, + 3) = na, 0,Ws = 1/s (n* - I), fi= scos ncp (2.4) 

Availing ourselves of the arbitrary choice of the origin of $ , we set the initial phase 
in &r equal to zero. Finally, satisfying conditions (1.4), we find that n #I, n = 2,3,..., 

i.e. that a solution of the cos cp type does not exist because it would violate the require- 
ment that the line of centers of mass coincide with the axis of rotation. 

The expression 60 sRs = nx - 1 in (2.4) defines the bifurcation points, i.e. the 
points at which the ehuilibrium cylindrical figures with normal cross sections with nfh 
order (n = 2,3,...)-axes of symmetry branch off from the cylinders with circuar cross 
sections. 

The equation for the second approximation is 

Es’ +n’&a = - WeI - 26,) + (6s --‘/Zen) +&I* (6 + 50) + 1/&i’ (2.5) 

From condition (1.5) and (2.4) we find that e, = 6i = 0. The solution of Eq.(2.5) is 

1 
b = QT (6s - l/s%) f & (3 - 4n*) + 4$ (2d - 1) co9 2nq 

Conditions (1.4) are fulfilled automatically, and condition (1.3) establishes the rela- 

0 

tionship among 6,, as and s’ , 

6a - ‘/a + V4(i - n9)sa = 0 (2.6) 

One more equation for these quantities results in the third 

n-2 approximation upon fulfillment of periodicity condition(l.5). 

Se3 (3 - n’) + 3& (aa - 1) +- ‘Isas (- 15 + 339 - 
-21n4 + 3d) = 0 (2.7) 

Eqs. (2.6) and (2.7) enable us to express es and 61 in terms 

> 

of s’. Substituting the resulting corrections e, and es into 

(2.2). we obtain an expression relating the angular velocity 
and the amplitude s of the deviation of the normal cross 

section of the equilibrium right cylinder from circular shape 
in the neighborhood of the bifurcation points o, (Fig. l), 

(@D” = ns - 1 
--& (I 

2 
- n*)*(i + 3) (2.6) 

Fig.2 shows these noncircular equilibrium figures. From 

Fig. 2 
(2.8) we see that in this approximation the branches of the 
noncircular cross sections behave as quadratic parabolas 
which turn towards the left at the point o = 0. It is clear, 

however, that the curves cannot reach this point, since the only possible equilibrium 
figure in the absence of rotation is the circular cylinder. Hence, each curve has its own 

turning point. These points can be determined in the subsequent approximations. 

3. The vrrlrtionrl method. In order to construct the brances of the 
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noncircular cross sections in the subsequent approximations we make use of the fact 

that the problem of equilibrium forms can be reduced to a variational problem. This is 
because the equilibrium figures correspond to the energy extremum under additional 

conditions (1.3) - (1.5). In the coordinate system rotating together with the liquid mass, 
the energy e per unit length of the cylinder is given by 

q* I* (3. i ) 

an5 as55 5975 IJ55&’ 

Fig. 3 

We attempt to find the function z = r(q) 
by the Ritz method in a form satisfying 

conditions (1.4) and (1.5). 

r(cp) = a(i + SC09 ncp + p co9 Zn(p) 
(3.2) 

(n = 2,3,...) u’ = 2JZs 
2+sr+pl 

The quantity a is here defined by con- 
dition (1.3). while 6 and p are the vari- 
ational formulas with respect to which the 

energy is extremized. 

Since substitution of (3.2) into (3.1) results in a complex expression, we expand in 
powers of 8, and p up to so and p*, inclusive, in (3.1). 

In this expression we use the same definition for o as in (1.2). Extremizing the above 
equation with respect to the parameters 9 and p , and carrying out some simple compu- 
tations, we obtain 

o’“R’ = 
na - 1 
-- 3(i ,, - nl)‘f (1 + n3) 

8 64ny .+ + 

+ (3 - 303 + 79n* + 14n6- 197ne + 14W0 + 15n1*) & (3.3) 

The shapes of bifurcation branches (3.3) are shown in Fig. 3. As expected, these bran- 
ches have turning points. In the neighborhoods of the bifurcation points, when we can 
limit ourselves to quadratic terms in s , these branches coincide with parabolas (2.8) 
obtained above. 
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